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We consider a quantum system consisting of a regular chain of elementary subsystems with nearest neighbor
interactions and assume that the total system is in a canonical state with temperatureT. We analyze under what
condition the state factors into a product of canonical density matrices with respect to groups ofn subsystems
each, and when these groups have the same temperatureT. While in classical mechanics the validity of this
procedure only depends on the size of the groupsn, in quantum mechanics the minimum group sizenmin also
depends on the temperatureT! As examples, we apply our analysis to a harmonic chain and different types of
Ising spin chains. We discuss various features that show up due to the characteristics of the models considered.
For the harmonic chain, which successfully describes thermal properties of insulating solids, our approach
gives a quantitative estimate of the minimal length scale on which temperature can exist: This length scale is
found to be constant for temperatures above the Debye temperature and proportional toT−3 below.
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I. INTRODUCTION

Thermodynamics is among the most successfully and ex-
tensively applied theoretical concepts in physics. Notwith-
standing, the various limits of its applicability are not fully
understood[1,2].

Of particular interest is its microscopic limit. Down to
which length scales can its standard concepts meaningfully
be defined and employed?

Besides its general importance, this question has become
increasingly relevant recently since amazing progress in the
synthesis and processing of materials with structures on na-
nometer length scales has created a demand for better under-
standing of thermal properties of nanoscale devices, indi-
vidual nanostructures, and nanostructured materials[3–6].
Experimental techniques have improved to such an extent
that the measurement of thermodynamic quantities like tem-
perature with a spatial resolution on the nanometer scale
seems within reach[7–9].

To provide a basis for the interpretation of present day
and future experiments in nanoscale physics and technology
and to obtain a better understanding of the limits of thermo-
dynamics, it is thus indispensable to clarify the applicability
of thermodynamical concepts on small length scales starting
from the most fundamental theory at hand, i.e., quantum me-
chanics. In this context, one question appears to be particu-
larly important and interesting: Can temperature be meaning-
fully defined on nanometer length scales?

The existence of thermodynamical quantities, i.e., the ex-
istence of the thermodynamic limit strongly depends on the
correlations between the considered parts of a system.

With increasing size, the volume of a region in space
grows faster than its surface. Thus effective interactions be-
tween two regions, provided they are short ranged, become

less relevant as the sizes of the regions increase. This scaling
behavior is used to show that correlations between a region
and its environment become negligible in the limit of infinite
region size and that therefore the thermodynamic limit exists
[10–12].

To explore the minimal region size needed for the appli-
cation of thermodynamical concepts, situations far away
from the thermodynamic limit should be analyzed. On the
other hand, effective correlations between the considered
parts need to be small enough[13,14].

The scaling of interactions between parts of a system
compared to the energy contained in the parts themselves
thus sets a minimal length scale on which correlations are
still small enough to permit the definition of local tempera-
tures. It is the aim of this paper to study this connection
quantitatively.

Some attempts to generalize thermodynamics such that it
applies to small systems have been made[15–17]. These
approaches consider ensembles of independent, i.e., nonin-
teracting, small systems. By introducing an additional ther-
modynamical potential they take into account the surface
effects of the small systems. However, since the interactions
between the small systems are neglected, these concepts can-
not capture the physics of the correlations. This shortcoming
is also obvious from the results: The correction terms they
predict do not depend on temperature, whereas it is well
known that correlations become more important the lower
the temperature.

Recently the impact of quantum correlations, i.e., en-
tanglement on macroscopic properties of solids and phase
transitions has drawn considerable attention[18–20]. Since
our analysis of criteria for local temperatures is based on a
study of correlations, our theoretical approach is a promising
tool to provide further insight into the role of correlations in
solid state physics.

We adopt here the convention that a local temperature
exists if the considered part of the system is in a canonical
state, where the distribution is an exponentially decaying*Electronic address: michael.hartmann@dlr.de
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function of energy characterized by one single parameter.
This implies that there is a one-to-one mapping between tem-
perature and the expectation values of observables, by which
temperature is usually measured. Temperature measurements
based on different observables will thus yield the same re-
sult, contrary to distributions with several parameters. In
large systems composed of very many subsystems, the den-
sity of states is a strongly growing function of energy[21]. If
the distribution were not exponentially decaying, the product
of the density of states times the distribution would not have
a pronounced peak and thus physical quantities like energy
would not have “sharp” values.

There have been attempts to describe systems which are
not in an equilibrium state but in some sense close to it with
a generalized form of thermodynamics, that has additional
system parameters. Such a situation appears for example in
glasses[22]. Our approach analyzes whether thermodynam-
ics in its standard form can apply locally. A study of whether
a generalized form of thermodynamics might apply even
more locally should be a subject of future research.

A typical setup where the minimal length scale we calcu-
late becomes relevant could be the measurement of a tem-
perature profile with very high resolution, etc. One is thus
interested in scenarios where the entire sample is expected to
be in a stationary state. In most cases this state is close to a
thermal equilibrium state[23].

Based on the above arguments and noting that a quantum
description becomes imperative at nanoscopic scales, the fol-
lowing approach appears to be reasonable: Consider a large
homogeneous quantum system, brought into a thermal state
via interaction with its environment, divide this system into
subgroups, and analyze for what subgroup size the concept
of temperature is still applicable.

Harmonic lattice models are a standard tool for the de-
scription of thermal properties of solids. We therefore apply
our theory to a harmonic chain model to get estimates that
are expected to be relevant for real materials and might be
tested by experiments.

Recently, spin chains have been subject of extensive stud-
ies in condensed matter physics and quantum information
theory. Thus correlations and possible local temperatures in
spin chains are of interest, both from a theoretical and ex-
perimental point of view[24,25]. We study spin chains with
respect to our present purpose and compare their character-
istics with the harmonic chain.

This paper is organized as follows: In Sec. II, we present
the general theoretical approach which derives two condi-
tions on the effective group interactions and the global tem-
perature. In the following two sections we apply the general
consideration to two concrete models and derive estimates
for the minimal subgroup size. Section III deals with a har-
monic chain, a model with an infinite energy spectrum. In
contrast, a spin chain has a bounded energy spectrum. Sec-
tion IV therefore discusses an Ising spin chain in a transverse
field. In the conclusions section, Sec. V, we compare the
results for the different models considered and indicate fur-
ther interesting topics.

II. GENERAL THEORY

We consider a homogeneous(i.e., translation invariant)
chain of elementary quantum subsystems with nearest neigh-

bor interactions. The Hamiltonian of our system is thus of
the form [26]

H = o
i

Hi + I i,i+1, s1d

where the indexi labels the elementary subsystems.Hi is the
Hamiltonian of subsystemi andI i,i+1 the interaction between
subsystemi and i +1. We assume periodic boundary condi-
tions.

We now formNG groups ofn subsystems each[index i
→ sm−1dn+ j ; m=1,… ,NG; j =1,… ,n] and split this Hamil-
tonian into two parts,

H = H0 + I , s2d

where H0 is the sum of the Hamiltonians of the isolated
groups,

H0 = o
m=1

NG

sHm − Imn,mn+1d

with

Hm = o
j=1

n

Hnsm−1d+j + Insm−1d+j ,nsm−1d+j+1 s3d

and I contains the interaction terms of each group with its
neighbor group,

I = o
m=1

NG

Imn,mn+1. s4d

We label the eigenstates of the total HamiltonianH and their
energies with the Greek indicessw ,cd and eigenstates and
energies of the group HamiltonianH0 with Latin indices
(a, b),

Huwl = Ewuwl and H0ual = Eaual. s5d

Here, the statesual are products of group eigenstates,

ual = p
m=1

NG

uaml, s6d

where sHm− Imn,mn+1duaml=Emuaml. Em is the energy of one
subgroup only andEa=om=1

NG Em.

A. Thermal state in the product basis

We assume that the total system is in a thermal state with
the density matrix

kwur̂ucl =
e−bEw

Z
dwc s7d

in the eigenbasis ofH. Here,Z is the partition sum andb
=skBTd−1 the inverse temperature with Boltzmann’s constant
kB and temperatureT. Transforming the density matrix(7)
into the eigenbasis ofH0 we obtain
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kaur̂ual =E
E0

E1

wasEd
e−bE

Z
dE s8d

for the diagonal elements in the new basis. Here, the sum
over all statesuwl has been replaced by an integral over the
energy.E0 is the energy of the ground state andE1 the upper
limit of the spectrum. For systems with an energy spectrum
that does not have an upper bound, the limitE1→` should
be taken. The density of conditional probabilitieswasEd is
given by

wasEd =
1

DE
o

huwl:EøEw,E+DEj
ukauwlu2, s9d

whereDE is small and the sum runs over all statesuwl with
eigenvaluesEw in the interval [E,E+DE). To compute the
integral of Eq.(8) we need to know the distribution of the
conditional probabilitieswasEd.

The stateual is not an eigenstate of the total Hamiltonian
H. Thus if H would be measured in the stateual, eigenvalues
of H would be obtained with certain probabilities:wasEd is
the density of this probability distribution. Since the Hamil-
tonianH is the sum of Hamiltonians of the groups, the situ-
ation has some analogies to a sum of random variables. This
indicates that there might exist a central limit theorem for the
present quantum system, provided the number of groups be-
comes very large[27]. Since the stateual is not translation
invariant and sinceH also contains the group interactions,
the central limit theorem has to be of a Lyapunov(or Linde-
berg) type for mixing sequences[28]. One can indeed show
that such a quantum central limit theorem exists for the
present model[29,30] and thatwasEd thus converges to a
Gaussian normal distribution in the limit of infinite number
of groupsNG,

lim
NG→`

wasEd =
1

Î2pDa

expS−
sE − Ea − «ad2

2Da
2 D , s10d

where the quantities«a andDa are defined by

«a ; kauHual − Ea, s11d

Da
2 ; kauH2ual − kauHual2. s12d

«a is the difference between the energy expectation value of
the distributionwasEd and the energyEa, while Da

2 is the
variance of the energyE for the distributionwasEd. Note that
«a has a classical counterpart whileDa

2 is purely quantum
mechanical. It appears because the commutator[H,H0] is
nonzero, and the distributionwasEd therefore has nonzero
width. The two quantities«a andDa

2 can also be expressed in
terms of the interaction only[see Eq.(2)],

«a = kauI ual, s13d

Da
2 = kauI2ual − kauI ual2, s14d

meaning that«a is the expectation value andDa
2 the squared

width of the interactions in the stateual.
The rigorous proof of Eq.(10) is given in Ref.[29] and

based on the following two assumptions: The energy of each

groupHm as defined in Eq.(3) is bounded, i.e.,

kxuHmuxl ø C s15d

for all normalized statesuxl and some constantC, and

kauH2ual − kauHual2 ù NGC8 s16d

for some constantC8.0.
In scenarios where the energy spectrum of each elemen-

tary subsystem has an upper limit, such as spins, condition
(15) is meta priori. For subsystems with an infinite energy
spectrum, such as harmonic oscillators, we restrict our analy-
sis to states where the energy of every group, including the
interactions with its neighbors, is bounded. Thus our consid-
erations do not apply to product statesual, for which all the
energy was located in only one group or only a small number
of groups. SinceNG@1, the number of such states is vanish-
ingly small compared to the number of all product states.

If conditions (15) and (16) are met, Eq.(8) can be com-
puted forNG@1 [31]:

kaur̂ual =
1

2Z
expS− bya +

b2Da
2

2
DFerfcSE0 − ya + bDa

2

Î2Da
D

− erfcSE1 − ya + bDa
2

Î2Da
DG , s17d

whereya=Ea+«a and erfcsxd is the conjugate Gaussian error
function,

erfcsxd =
2

Îp
E

x

`

e−s2
ds. s18d

The second error function in Eq.(17) only appears if the
energy is bounded and the integration extends from the en-
ergy of the ground stateE0 to the upper limit of the spectrum
E1.

Note thatya is a sum ofNG terms and thatDa fulfills Eq.
(16). The arguments of the conjugate error functions thus
grow proportional toÎNG or stronger. If these arguments
divided by ÎNG are finite (different from zero), the
asymptotic expansion of the error function[32] may thus be
used forNG@1:

erfcsxd < 5
exps− x2d

Îpx
for x → `

2 +
exps− x2d

Îpx
for x → − `.

s19d

Inserting this approximation into Eq.(17) and usingE0
,ya,E1 shows that the second conjugate error function,
which contains the upper limit of the energy spectrum, can
always be neglected compared to the first, which contains the
ground state energy.

The same type of arguments show that the normalizations
of the Gaussian in Eq.(10) is correct although the energy
range does not extend over the entire real axis(−`, `).

Applying the asymptotic expansion(19), Eq. (17) can be
taken to read
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kaur̂ual =
1

Z
expF− bSEa + «a −

bDa
2

2
DG s20d

for sE0−Ea−«a+bDa
2d / sÎ2NGDad,0 and

kaur̂ual =

expS− bE0 −
sEa + «a − E0d2

2Da
2 D

Î2pZ
E0 − Ea − «a + bDa

2

Da

, s21d

for sE0−Ea−«a+bDa
2d / sÎ2NGDad.0.

The off diagonal elementskaur̂ubl vanish for uEa−Ebu
.Da+Db because the overlap of the two distributions of
conditional probabilities becomes negligible. ForuEa−Ebu
,Da+Db, the transformation involves an integral over fre-
quencies and thus these terms are significantly smaller than
the entries on the diagonal.

B. Conditions for local thermal states

We now test under what conditions the density matrixr̂
may be approximated by a product of canonical density ma-
trices with temperature bloc for each subgroup m
=1,2,… ,NG. Since the trace of a matrix is invariant under
basis transformations, it is sufficient to verify the correct
energy dependence of the product density matrix. If we as-
sume periodic boundary conditions, all reduced density ma-
trices are equal and their product is of the formkaur̂ual
~ exps−blocEad. We thus have to verify whether the loga-
rithm of the right-hand side of Eqs.(20) and(21) is a linear
function of the energyEa,

lnskaur̂uald < − blocEa + c, s22d

wherebloc andc are constants.
Note that Eq.(22) does not imply that the occupation

probability of an eigenstateuwl with energyEw and a product
state with the same energyEa<Ew are equal. Sincebloc and
b enter into the exponents of the respective canonical distri-
butions, the difference between both has significant conse-
quences for the occupation probabilities; even ifbloc and b
are equal with very high accuracy, but not exactly the same,
occupation probabilities may differ by several orders of mag-
nitude, provided that the energy range is large enough.

We exclude negative temperaturessb.0d. Equation(22)
can only be true for

Ea + «a − E0

ÎNGDa

. b
Da

2

ÎNGDa

, s23d

as can be seen from Eqs.(20) and (21). In this case,kaur̂ual
is given by Eq.(20) and to satisfy Eq.(22), «a and Da

2 fur-
thermore have to be of the following form:

− «a +
b

2
Da

2 < c1Ea + c2, s24d

wherec1 andc2 are constants. Note that«a andDa
2 need not

be functions ofEa and therefore in general cannot be ex-
panded in a Taylor series.

To ensure that the density matrix of each subgroupm is
approximately canonical, one needs to satisfy Eq.(24) for
each subgroupm separately;

−
«m−1 + «m

2
+

b

4
sDm−1

2 + Dm
2d +

b

6
D̃m

2 < c1Em + c2, s25d

where «m=kauImn,mn+1ual with «a=om=1
NG «m, Dm

2 =kauHm
2 ual

−kauHmual2 and D̃m
2 =on=m−1

m+1 kauHn−1Hn+HnHn−1ual
−2kauHn−1ualkauHnual.

Temperature becomes intensive, if the constantc1
vanishes,

uc1u ! 1 ⇒ bloc = b. s26d

If this was not the case, temperature would not be intensive,
although it might exist locally.

It is sufficient to satisfy conditions(23) and (25) for an
adequate energy rangeEminøEmøEmax only. For large sys-
tems with a modular structure, i.e., a system composed of a
large number of subsystems, the density of states is typically
a rapidly growing function of energy[21,33]. If the total
system is in a thermal state, occupation probabilities decay
exponentially with energy. The product of these two func-
tions is thus sharply peaked at the expectation value of the
energyE of the total systemE+E0=TrsHr̂d, with E0 being
the ground state energy(see Fig. 1).

The energy range thus needs to be centered around this
peak and large enough. On the other hand it must not be
larger than the range of valuesEm can take on. Therefore a
pertinent and “safe” choice forEmin andEmax is

Emin = maxSfEmgmin,
1

a

E

NG
+

E0

NG
D ,

Emax= minSfEmgmax,a
E

NG
+

E0

NG
D , s27d

wherea@1 andE will in general depend on the global tem-
perature. In Eq.(27), fEmgmin andfEmgmaxdenote the minimal
and maximal valuesEm can take on.

Figure 2 shows the logarithm of Eq.(17) and the loga-
rithm of a canonical distribution with the sameb for a har-
monic chain as an example. The actual density matrix is

FIG. 1. The product of the density of stateshsEd times the
occupation probabilitieskwur̂uwl forms a strongly pronounced peak
at E=E.
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more mixed than the canonical one. In the interval between
the two vertical lines, both criteria(23) and(25) are satisfied.
For E,Elow Eq. (23) is violated and Eq.(25) for E.Ehigh.
To allow for a description by means of canonical density
matrices, the group size needs to be chosen such thatElow
,Emin andEhigh.Emax.

For a model obeying Eqs.(15) and (16), the two condi-
tions(23) and(25), which constitute the general result of this
paper, must both be satisfied. These fundamental criteria will
now be applied to some concrete examples.

III. HARMONIC CHAIN

As a representative for the class of systems with an infi-
nite energy spectrum, we consider a harmonic chain ofNG·n
particles of massm and spring constantÎmv0. In this case,
the Hamiltonian reads

Hi =
m

2
pi

2 +
m

2
v0

2qi
2, s28d

I i,i+1 = − mv0
2qiqi+1, s29d

wherepi is the momentum of the particle at sitei andqi the
displacement from its equilibrium positioni ·a0 with a0 being
the distance between neighboring particles at equilibrium.
We divide the chain intoNG groups ofn particles each and
thus get a partition of the type considered above.

The Hamiltonian of one group is diagonalized by a Fou-
rier transform and the definition of creation and annihilation
operatorsak

† andak for the Fourier modes(see Appendix A).

Ea = o
m=1

NG

o
k

vkSnk
asmd +

1

2
D , s30d

where k=pl / fa0sn+1dg sl =1,2,… ,nd and the frequencies
vk are given byvk

2=4v0
2 sin2ska/2d. nk

asmd is the occupation
number of modek of groupm in the stateual. We chose units
where"=1.

We first verify that the harmonic chain model fulfills the
conditions for the applicability of the quantum central limit
theorem(10). To see that it satisfies the condition(16) one
needs to express the group interactionImn,mn+1 in terms ofak

†

andak, which yieldsD̃m=0 for all m and therefore

Da
2 = o

m=1

NG

Dm
2 , s31d

whereDm, the width of one group interaction, reads

Dm
2 = S 2

n + 1
D2Fo

k

cos2Ska0

2
DvkSnk +

1

2
DG

·Fo
p

cos2Spa0

2
DvpSmp +

1

2
DG . s32d

Dm
2 has a minimum value since allnkù0 and allmpù0. In

Eq. (32), k labels the modes of groupm with occupation
numbersnk andp the modes of groupm+1 with occupation
numbersmp. The widthDa

2 thus fulfills condition(16).
Since the spectrum of every single oscillator is infinite,

condition (15) can only be satisfied for states, for which the
energy of the system is distributed among a substantial frac-
tion of the groups, as discussed in Sec. II.

We now turn to analyze the two criteria(23) and(25). The
expectation values of the group interactions vanish,«m=0,
while the widthsDm

2 depend on the occupation numbersnk
and therefore on the energiesEm. We thus have to consider
both conditions, Eqs.(23) and (25). To analyze these, we
make use of the continuum or Debye approximation[34],
requiring n@1, a0! l, where l =na0, and the length of the
chain to be finite. In this case we havevk=vk with the con-
stant velocity of soundv=v0a0 and cosska0/2d<1. The
width of the group interaction thus translates into

Dm
2 =

4

n2EmEm+1, s33d

wheren+1<n has been used. The relevant energy scale is
introduced by the thermal expectation value of the entire
chain

E = NGnkBQS T

Q
D2E

0

Q/T x

ex − 1
dx, s34d

and the ground state energy is given by

E0 = NGnkBQS T

Q
D2E

0

Q/T x

2
dx=

NGnkBQ

4
. s35d

We first consider the criterion(23).
For a givenEa=omEm, the squared widthDm

2 is largest if

all Em are equal,Em=Ẽ ∀m. Thus Eq.(23) is hardest to
satisfy for that case, where it reduces to

Ẽ −
E0

NG
−

4b

n2 Ẽ2 . 0. s36d

Equation (36) sets a lower bound onn. For temperatures

where E,E0, this bound is strongest for low energiesẼ,

while at E.E0 it is strongest for high energiesẼ. Since
condition (25) is a stronger criterion than condition(23) for
E.E0, we only consider Eq.(36) at temperatures whereE
,E0. In this range, Eq.(36) is hardest to satisfy for low

energies, i.e., atẼ=sE/aNGd+sE0/NGd, where it reduces to

FIG. 2. lnskaur̂uald for r̂ as in Eq.(17) (solid line) and a canoni-
cal density matrixr̂ (dashed line) for a harmonic chain.
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n .
Q

T

a

4e
S4e

a
+ 1D2

, s37d

with e=E/ snNGkBQd.
To test condition(25) we take the derivative with respect

to Em on both sides,

b

n2SEm−1 + Em+1 − 2
E0

NG
D +

2b

n2

E0

NG
< c1, s38d

where we have separated the energy dependent and the con-
stant part in the left-hand side Eq.(38) is satisfied if the
energy dependent part is much smaller than 1,

b

n2SEm−1 + Em+1 − 2
E0

NG
D ø d ! 1. s39d

This condition is hardest to satisfy for high energies. Taking
Em−1 andEm+1 equal to the upper bound in Eq.(27), it yields

n .
2a

d

Q

T
e, s40d

where the “accuracy” parameterd!1 quantifies the value of
the energy dependent part in Eq.(38).

Since the constant part in the left-hand side of(38)
satisfies

2b

n2

E0

NG
,

Îd

a
S 1

Î2
−

Îd

a
D ! 1, s41d

temperature is intensive.
Inserting Eq.(34) into Eqs. (37) and (40) one can now

calculate the minimaln for given d, a, Q and T. Figure 3
showsnmin for a=10 andd=0.01 given by criterion(37) and
(40) as a function ofT/Q. Hence local temperature exists,
i.e., local states are canonical for all group sizes larger than
the maximum of the twonmin curves plotted in Fig. 3.

For high(low) temperaturesnmin can thus be estimated by

nmin < H2a/d for T . Q

s3a/2p2dsQ/Td3 for T , Q.
s42d

Equation(42) also shows the dependence of the results on
the “accuracy parameters”a andd. In the whole temperature

range,nmin~a, in other words, the larger one chooses the
energy range where Eqs.(23) and (25) should be fulfilled,
the larger has to be the number of particles per group. Fur-
thermore, for high temperatures,nmin~d−1, which simply
states that one needs more particles per group to obtain a
canonical state with better accuracy.

Since the resulting minimal group sizesnmin are larger
than 103 for all temperatures, the application of the Debye
approximation is well justified.

IV. ISING SPIN CHAIN IN A TRANSVERSE FIELD

In this section we consider an Ising spin chain in a trans-
verse field. For this model the Hamiltonian reads

Hi = − Bsi
z,

I i,i+1 = −
Jx

2
si

x
^ si+1

x −
Jy

2
si

y
^ si+1

y , s43d

wheresi
x, si

y, andsi
z are the Pauli matrices.B is the magnetic

field and Jx and Jy are two coupling parameters. We will
always assumeB.0.

The entire chain with periodic boundary conditions may
be diagonalized via successive Jordan-Wigner, Fourier, and
Bogoliubov transformations(see Appendix B). The relevant
energy scale is introduced via the thermal expectation value
(without the ground state energy)

E =
nNG

2p
E

−p

p

dk
vk

expsbvkd + 1
, s44d

wherevk is given in Eq.(B9). The ground state energyE0 is
given by

E0 = −
nNG

2p
E

−p

p

dk
vk

2
. s45d

SinceNG@1, the sums over all modes have been replaced by
integrals.

If one partitions the chain intoNG groups ofn subsystems
each, the groups may also be diagonalized via a Jordan-
Wigner and a Fourier transformation(see Appendix B). Us-
ing the abbreviations

K =
Jx + Jy

2B
and L =

Jx − Jy

2B
, s46d

the energyEa reads

Ea = 2Bo
m=1

NG

o
k

f1 − K cosskdgSnk
asmd −

1

2
D , s47d

wherek=pl / sn+1d sl =1,2,… ,nd and nk
asmd is the Fermi-

onic occupation number of modek of group m in the state
ual. It can take on the values 0 and 1.

For the Ising model at hand one has, as for the harmonic
chain,«a=0 for all statesual, while the squared varianceDa

2

reads

FIG. 3. Log-log-plot ofnmin from Eq.(37) (dashed line) andnmin

from Eq. (40) (solid line) for a=10 andd=0.01 as a function of
T/Q for a harmonic chain.d and a are defined in Eqs.(40) and
(27), respectively. Local temperature exists in the shaded area.
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Da
2 = o

m=1

NG

Dm
2 , s48d

with

Dm
2 = B2SK2

2
+

L2

2
D − 2B2sK2 − L2d

3F 2

n + 1o
k

sin2skdSnk
asmd −

1

2
DG

3F 2

n + 1o
p

sin2spdSnp
asm + 1d −

1

2
DG , s49d

where thenk
asmd are the same Fermionic occupation numbers

as in Eq.(47).
The conditions for the central limit theorem are met for

the Ising chain apart from two exceptions: Condition(15) is
always fulfilled as the Hamiltonian of a single spin has finite
dimension. As follows from Eq.(49), condition(16) is satis-
fied except for one single state in the case whereJx=Jy sL
=0d andJx=−Jy sK=0d, respectively. These two states have
Dm

2 =0 and thusDa
2,NGC8. The state forL=0 is the one

where all occupation numbersnk
asmd vanish and the state for

K=0 is the state with alternating occupation numbers
nk

asmd=0, nk
asm+1d=1, nk

asm+2d=0,… (for all k each). As
there is, for given parameters, at most one state that does not
fulfill Eq. (16), the fraction of states where our theory does
not apply is negligible forNG@1.

We now turn to analyze conditions(23) and (25). Since
the spectrum of the Ising chain is limited, there is no ap-
proximation analog to the Debye approximation for the har-
monic chain andDm

2 cannot be expressed in terms ofEm−1
and Em. We therefore approximate Eqs.(23) and (25) with
simpler expressions. The results are thus quantitatively not as
precise as for the harmonic chain, but nevertheless yield re-
liable order of magnitute estimates.

Let us first analyze condition(23). Since it cannot be
checked for every stateual we use the stronger condition

Em −
E0

NG
. bfDm

2gmax, s50d

instead, which implies that Eq.(23) holds for all statesual.
We require Eq.(50) to be true for all states with energies in
the range(27). It is hardest to satisfy forEm=Emin, we thus
get the condition onn:

n . b
fDm

2gmax

emin − e0
, s51d

whereemin=Emin/n ande0=E0/ snNGd.
We now turn to analyze condition(25). Equation (49)

shows that theDm
2 do not contain terms which are propor-

tional to Em. One thus has to determine when theDm
2 are

approximately constant which is the case if

b
fDm

2gmax− fDm
2gmin

2
! fEmgmax− fEmgmin, s52d

where fxgmax and fxgmin denote the maximal and minimal
value x takes on in all statesual. As a direct consequence,
we get

uc1u ! 1 s53d

which means that temperature is intensive. Defining the
quantity em=Em /n, we can rewrite Eq.(52) as a condition
on n,

n ù
b

2d

fDm
2gmax− fDm

2gmin

femgmax− femgmin
, s54d

where the accuracy parameterd!1 is equal to the ratio of
the left-hand side and the right-hand side of Eq.(52).

Since Eq.(52) does not take into account the energy range
(27), its application needs some further discussion.

If the occupation number of one mode of a group is
changed, say fromnk

asmd=0 to nk
asmd=1, the corresponding

Dm
2 differ at most by 4B2uK2−L2u / sn+1d. On the other hand,

fDm
2gmax−fDm

2gmin=B2uK2−L2u. The state with the maximalDm
2

and the state with the minimalDm
2 thus differ in nearly all

occupation numbers and therefore their difference in energy
is close tofEmgmax−fEmgmin. On the other hand, states with
similar energiesEm also have a similarDm

2. Hence theDm
2

only change quasicontinuously with energy and Eq.(52) en-
sures that theDm

2 are approximately constant even on only a
part of the possible energy range.

We are now going to discuss three special coupling
models.

A. Coupling with constant width Da: Jy=0

If one of the couplings vanishes(Jx=0 orJy=0), K=L and
Dm

2 =B2K2 is constant. In this case only criterion(23) has to
be satisfied, which then coincides with Eq.(51).

Plugging expressions(44), (45), and (49) and with Jx=J
and Jy=0 into condition (51), one can now calculate the
minimal number of systems per group.

Figure 4 showsnmin for weak couplingK=L=0.1 and
strong couplingK=L=10 with a=10 as a function ofT/B.

FIG. 4. Log-log plot ofnmin from Eq.(51) for K=L=0.1(dashed
line) and for K=L=10 (solid line) as a function ofT/B. a=10 is
defined in Eq.(27).
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We choose units where Boltzmann’s constantkB is 1.
For any set of parameters, there is a finite temperature

above whichnmin=1.
Note that, sinceDm=const, condition(51) coincides with

criterion (23) sDm=const=fDmgmaxd, so that using Eq.(51)
does not involve any approximations.

As condition(24) is automatically satisfied for the present
model, the results do not depend on the “accuracy param-
eter” d. The dependence of the results ona is shown in Fig.
5. a plays a role only whereEmin=E/ saNGd+E0/NG [cf. Eq.
(27)]. Then for smallera, nmin eventually decays steeper and
thus reachesnmin=1 already at lower temperatures. There is
thus a temperature interval, wherenmin is larger for largera
and vice versa. This dependency has the same interpretation
as for the harmonic chain.

B. Fully anisotropic coupling: Jx=−Jy

If both couplings are nonzero, the variancesDm
2 are not

constant. As an example, we consider here the fully aniso-
tropic coupling, whereJx=−Jy, i.e., K=0. Now criteria(51)
and (54) have to be met.

For K=0, one hasfDm
2gmax=B2L2, fDm

2gmin=0 andfemgmax

=−femgmin=B. Plugging these results into Eq.(54) as well as
Eqs. (44) and (45) into Eq. (51), the minimal number of
systems per group can be calculated.

Figure 6 showsnmin from criterion(51) and from criterion
(54) separately, for weak couplingL=0.1 and strong cou-
pling L=10 witha=10 andd=0.01 as a function ofT/B. For

each coupling strengthL, the stronger condition, that is the
higher curve in Fig. 6, sets the relevant lower bound to the
group sizen.

In the present case, all occupation numbersnk
asmd are zero

in the ground state of a group. In this state,Dm
2 is maximal

sDm
2 =B2L2d as can be seen from Eq.(49). Therefore criterion

(51) is equivalent to criterion(23) for low temperatures,
where Emin=fEmgmin. For high temperatures, whereEmin

=E/ saNGd, condition(51) is slightly stronger than Eq.(23).
For the present model, this is only the case forL=0.1
(dashed line) andT*0.45B.

In Fig. 6, the results obtained from Eq.(54) are propor-
tional to d−1 (dash-dotted line and gray line), while those
obtained from Eq.(51) (dashed line and solid line) have the
same dependency ona as shown in Fig. 5.

C. Isotropic coupling: Jx=Jy

As a third example, we consider the isotropic coupling,
where Jx=Jy, i.e., L=0. Again, both criteria(51) and (54)
have to be met.

The values offDm
2gmax, fDm

2gmin, femgmax, and femgmin are
given in Eqs.(B11)–(B13).

For the present model withL=0 and uKu,1 all occupa-
tion numbersnk

asmd are zero in the ground state and thus
Dm

2 =0. As a consequence, condition(51) cannot be used in-
stead of Eq.(23). We therefore argue as follows: In the
ground stateEm−E0/NG=0 as well asDm

2 =0 and all occupa-
tion numbersnk

asmd are zero. If one occupation number is
then changed from 0 to 1,Dm

2 changes at most by
4B2K2/ sn+1d andEm changes at least by 2Bs1−uKud. There-
fore, Eq.(23) will hold for all states except the ground state
if

n . 2Bb
K2

1 − uKu
. s55d

If uKu.1, occupation numbers of modes with cosskd
,1/uKu are zero in the ground state and occupation numbers
of modes with cosskd.1/uKu are 1.Dm

2 for the ground state
then isfDm

2ggs<fDm
2gmax/2 and Eq.(51) is a good approxima-

tion of condition(23).
Plugging these results into Eq.(54) as well as Eq.(44)

and Eq.(45) into Eq. (51) for uKu.1 and using Eq.(55) for
uKu,1, the minimal number of systems per group can be
calculated.

Figure 7 showsnmin from criteria (55) and (54) and for
weak couplingK=0.1 and from criteria(51) and(54) and for
strong couplingK=10 with a=10 andd=0.01 as a function
of T/B. For each coupling strengthK, the stronger condition,
that is the higher curve in Fig. 7, sets the relevant lower
bound to the group sizen.

Equation(55) does not take into account the relevant en-
ergy range(27); it is therefore possible that a weaker condi-
tion could be sufficient in that case. However, since Eq.(54)
is a stronger condition than Eq.(55) for K=0.1, this possi-
bility has no relevance.

For strong coupling,K=10, Eq.(51) is used to approxi-
mate Eq.(23). This approximation is expected to be good

FIG. 5. Log-log plot ofnmin as a function ofT/B from Eq. (51)
for two values of the accuracy parametera, a=1 anda=100, left
plot for K=L=0.1 and right plot forK=L=10. a is defined in
Eq. (27).

FIG. 6. Log-log plot ofnmin for L=0.1 from Eq.(51) (dashed
line) and from Eqs.(54) (dash-dotted line) andnmin for L=10 from
Eq. (51) (solid line) and from Eq.(54) (gray line) as a function of
T/B. K=0, a=10, andd=0.01.a andd are defined in Eq.(27) and
(54), respectively.
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becauseDm is close to its maximal value for low energy
states. Furthermore, the temperature dependence we obtain
here for nmin for low temperatures is the same as for the
harmonic chain,nmin~T−3. This agreement is to be expected:
The two couplings, when expressed in creation and annihi-
lation operators, have the same structure and the upper limit
of the spectrum of the spin chain becomes irrelevant at low
temperatures.

For the present model, the dependence of the results on
the “accuracy parameters”a and d is as follows. Results
obtained from Eq.(54) are proportional tod−1 (dash-dotted
line and gray line), while the result obtained from Eq.(51)
(solid line) has the same dependency ona as shown in Fig.
5. For weak coupling and low temperatures(dashed line)
nmin does not depend on the two “accuracy parameters.”

V. SUMMARY AND CONCLUSIONS

We have considered a linear chain of particles interacting
with their nearest neighbors. We have partitioned the chain
into identical groups ofn adjoining particles each. Taking the
number of such groups to be very large and assuming the
total system to be in a thermal state with temperatureT we
have found conditions[Eqs. (23) and (25)], which ensure
that each group is approximately in a thermal state. Further-
more, we have determined when the isolated groups have the
same temperatureT, that is, when temperature is intensive.

The result shows that, in the quantum regime, these con-
ditions depend on the temperatureT, contrary to the classical
case. The characteristics of the temperature dependence are
determined by the widthDa of the distribution of the total
energy eigenvalues in a product state and its dependence on
the group energiesEa. The low temperature behavior, in par-
ticular, is related to the fact thatDa has a nonzero minimal
value. This fact does not only appear in the harmonic chain
or spin chains but is a general feature of quantum systems
composed of interacting particles or subsystems. The com-
mutator[H,H0] is nonzero and the ground state of the total
system is energetically lower than the lowest product state,
thereforeDa is nonzero, even at zero temperature[25,35–37].

We have then applied the general method to a harmonic
chain and several types of Ising spin chains. For concrete

models, the conditions(23) and (25) determine a minimal
group size and thus a minimal length scale on which tem-
perature may be defined according to the temperature con-
cept we adopt. Grains of size below this length scale are no
more in a thermal state. Thus temperature measurements
with a higher resolution should no longer be interpreted in a
standard way.

We have given order of magnitude estimates for the mini-
mal group size(minimal length scale) for the models men-
tioned above. The most striking difference between the spin
chains and the harmonic chain is that the energy spectrum of
the spin chains is limited, while it is infinite for the harmonic
chain.

For spins at very high global temperatures, the total den-
sity matrix is then almost completely mixed, i.e., propor-
tional to the identity matrix, and thus does not change under
basis transformations. There are thus global temperatures
which are high enough, so that local temperatures exist even
for single spins.

For the harmonic chain, this feature does not appear, since
the size of the relevant energy range increases indefinitely
with growing global temperature, leading to the constant
minimal length scale in the high energy range.

For the spin chain with isotropic coupling,Jx=Jy, and the
harmonic chain, the temperature dependencies ofnmin for
low temperatures coincide,nmin~T−3, because both cou-
plings have the same structure and the upper limit of the
spectrum of the spin chain becomes irrelevant at low tem-
peratures. The spin chain withJx=0 or Jy=0 shows the in-
teresting feature thatDa

2 is constant and condition(25) is
automatically fulfilled.

The set of models we have discussed is by no means
exhaustive. It would be particularly interesting to see
whether there are systems for which local temperatures can
exist although they are not intensive. This can happen if
either «a or Da

2 were proportional toEa. Da
2, however, has

dimension energy squared, so that it cannot be proportional
to Ea unless there exists another characteristic energy of the
system independent ofEa. So far, we have not found models
where«a~Ea.

For the models we consider here, the off diagonal ele-
ments of the density operator in the product basis,kaur̂ubl
saÞbd, are significantly smaller than the diagonal ones,
kaur̂ual. Our general result, conditions(23) and (25), thus
states that the density matrixr̂ “approximately” factorizes
with respect to the considered partition. This implies that the
stater̂ is not entangled with respect to this partition, at least
within the chosen accuracy. It would therefore be interesting
to see how our result relates to the scaling of entanglement in
many particle systems[38].

Unfortunately, our approach only applies to nonzero tem-
peratures. The underlying central limit theorem[29,30] is
about the weak convergence of the distribution of energy
eigenvalues. Weak convergence means that only integrals
over energy intervals of nonzero length do converge. We thus
cannot make statements about a system in its ground state,
let alone about the entanglement in that state.

Since harmonic lattice models in Debye approximation
have proven to be successful in modeling thermal properties

FIG. 7. Log-log-plot ofnmin for K=0.1 from Eq.(55) (dashed
line), and from Eq.(54) (dash-dotted line) andnmin for K=10 from
Eq. (51) (solid line) and from Eq.(54) (gray line) as a function of
T/B. L=0, a=10, andd=0.01.a andd are defined in Eqs.(27) and
(54), respectively.
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of insulators(e.g., heat capacity) [34], our calculation for the
harmonic chain provides a first estimate of the minimal
length scale on which intensive temperatures exist in insulat-
ing solids,

lmin = nmina0. s56d

Let us give some numerical estimates: Choosing the “accu-
racy parameters” to bea=10 andd=0.01, we get for hot iron
(T@Q<470 K, a0<2.5 Å) lmin<50 mm, while for carbon
(Q<2230 K, a0<1.5 Å) at room temperature(270 K) lmin
<10 mm. The coarse graining will experimentally be most
relevant at very low temperatures, wherelmin may even be-
come macroscopic. A pertinent example is silicon(Q
<645 K, a0<2.4 Å), which has lmin<10 cm at T<1 K
(again witha=10 andd=0.01).

Of course the validity of the harmonic lattice model will
eventually break down at finite, high temperatures and our
estimates will thus no longer apply there.

Measurable consequences of the local breakdown of the
concept of temperature and their implications for future
nanotechnology are interesting questions which arise in the
context of the present discussion.

In the scenarios of global equilibrium, which we consider
here, a temperature measurement with a microscopic ther-
mometer, locally in thermal contact with the large chain,
would not reveal the nonexistence of local temperature. One
can model such a measurement with a small system, repre-
senting the thermometer, coupled to a heat bath, representing
the chain. It is a known result of such system bath models
[39], that the system always relaxes to a thermal state with
the global temperature of the bath, no matter how local the
coupling might be.

This, however, does not mean that the existence or non-
existence of local temperatures had no physical relevance:
There are indeed physical properties, which are determined
by the local states rather than the global ones. Whether these
properties are of thermal character depends on the existence
of local temperatures. A detailed discussion of such proper-
ties will be given elsewhere.

The length scales, calculated in this paper, should also
constrain the way one can meaningfully define temperature
profiles in nonequilibrium scenarios[40]. Here, temperature
measurements with a microscopic thermometer, which is lo-
cally in thermal contact with the sample, might indeed be
suitable to measure the local temperature. An explicit study
of this possibility should be subject of future research.
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APPENDIX A: DIAGONALIZATION
OF THE HARMONIC CHAIN

The Hamiltonian of a harmonic chain is diagonalized by a
Fourier transformation and the definition of creation and an-
nihilation operators.

For the entire chain with periodic boundary conditions,
the Fourier transformation reads

Hqj

pj
J =

1
ÎnNG

o
k
Huk expsia0kjd

vk exps− ia0kjd
sA1d

with k=2pl / sa0nNGd and (l =0, ±1,…± snNG−2d /2,
snNGd /2, wherenNG has been assumed to be even.

For the diagonalization of one single group, the Fourier
transformation is

Hqj

pj
J =Î 2

n + 1o
k
Huk

vk
J 3 sinsa0kjd sA2d

with k=pl / sa0sn+1dd and sl =1,2,… ,nd.
The definition of the creation and annihilation operators is

in both cases

Hak
†

ak
J =

1
Î2mvk

SmvkukH−

+
JivkD , sA3d

where the correspondinguk andvk have to be inserted. The
frequenciesvk are given byvk

2=4v0
2 sin2ska0/2d in both

cases.
The operatorsak

† andak satisfy Bosonic commutation re-
lations

fak,apg = 0,

fak,ap
†g = dkp sA4d

and the diagonalized Hamiltonian reads

H = o
k

vkSak
†ak +

1

2
D . sA5d

APPENDIX B: DIAGONALIZATION
OF THE ISING CHAIN

The Hamiltonian of the Ising chain is diagonalized via
Jordan-Wigner transformation which maps it to a Fermionic
system[41,42],

ci = Sp
j,i

s j
zDsi

x + isi
y

2
,

ci
† = Sp

j,i

s j
zDsi

x − isi
y

2
. sB1d

The operatorsci and ci
† fulfill Fermionic anticommutation

relations

hci,cjj = 0,

hci,cj
†j = di j sB2d

and the Hamiltonian reads
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H = BFo
j

s2cj
†cj − 1d − Ko

j
scj

†cj+1 + H.c.d

− Lo
j

scj
†cj+1

† + H.c.dG sB3d

with K=sJx+Jyd / s2Bd and L=sJx−Jyd / s2Bd. In the case of
periodic boundary conditions a boundary term is neglected in
Eq. (B3). For long chainssnNG→`d this term is suppressed
by a factorsnNGd−1. The Hamiltonian now describes Fermi-
ons which interact with their nearest neighbors. As for the
Bosonic system, a Fourier transformation maps the system to
noninteracting fermions. For the whole chain with periodic
boundary conditions

Hcj
†

cj
J =

1
ÎnNG

o
k

eikj 3 Hdk
†

dk

sB4d

with k=s2pld / snNGd where l =0, ±1,… , ±snNG−2d /2,
snNGd /2 for nNG even, and

Hcj
†

cj
J =Î 2

n + 1o
k

sinskjd 3 Hdk
†

dk

sB5d

with k=spld / sn+1d andsl =1,2,… ,nd for one single group.
In the case of periodic boundary conditions, fermion in-

teractions of the formdk
†d−k

† anddkd−k remain. Therefore one
still has to apply a Bogoliubov transformation to diagonalize
the system, i.e.,

dk
† = ukbk

† − ivkb−k,

dk = ukbk + ivkb−k
† , sB6d

whereuk=u−k, vk=−v−k, anduk
2+vk

2=1. With the definitions
uk=cossQk/2d andvk=sinsQk/2d the interaction terms disap-
pear for

cossQkd =
1 − K cosk

Îf1 − K coskg2 + fL sinkg2
. sB7d

In the case of the finite chain of one group, the Bogoliu-
bov transformation is not needed since the corresponding
terms are of the formdk

†dk
† anddkdk and vanish by virtue of

Eq. (B2).
The Hamiltonians in the diagonal form read

H = o
k

vkSbk
†bk −

1

2
D , sB8d

where the frequencies are

vk = 2BÎf1 − K coskg2 + fL sinkg2 sB9d

with k=s2pld / snNGd for the periodic chain and

vk = 2Bs1 − K coskd sB10d

with k=spld / sn+1d for the finite chain.
For the finite chain the occupation number operators may

also be chosen such thatvk is always positive. Here, the
convention at hand is more convenient, since the same occu-
pation numbers also appear in the group interaction and thus
in Dm.

Maxima and minima of Em and Dm
2

The maximal and minimal values ofEm are given by

HfEmgmax

fEmgmin
J = H+

−
JnB, sB11d

for uKu,1 and by

HfEmgmax

fEmgmin
J = H+

−
JnB

2

p
FÎK2 − 1 + arcsinS 1

uKu DG ,

sB12d

for uKu.1, where the sum over all modesk has been ap-
proximated with an integral.

The maximal and minimal values ofDm
2 are given by

HfDm
2gmax

fDm
2gmin

J = B2 3 HmaxsK2,L2d
minsK2,L2d.

sB13d
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