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Local versus global thermal states: Correlations and the existence of local temperatures
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We consider a quantum system consisting of a regular chain of elementary subsystems with nearest neighbor
interactions and assume that the total system is in a canonical state with temp€rateranalyze under what
condition the state factors into a product of canonical density matrices with respect to groupshsystems
each, and when these groups have the same tempefatWaile in classical mechanics the validity of this
procedure only depends on the size of the graugas quantum mechanics the minimum group sigg, also
depends on the temperatufFeAs examples, we apply our analysis to a harmonic chain and different types of
Ising spin chains. We discuss various features that show up due to the characteristics of the models considered.
For the harmonic chain, which successfully describes thermal properties of insulating solids, our approach
gives a quantitative estimate of the minimal length scale on which temperature can exist: This length scale is
found to be constant for temperatures above the Debye temperature and proportibrishétow.
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I. INTRODUCTION less relevant as the sizes of the regions increase. This scaling
o behavior is used to show that correlations between a region
Thermodynamics is among the most successfully and exand its environment become negligible in the limit of infinite
tensively applied theoretical concepts in physics. Notwithregion size and that therefore the thermodynamic limit exists
standing, the various limits of its applicability are not fully [10-12.
understood1,2]. To explore the minimal region size needed for the appli-
Of particular interest is its microscopic limit. Down to cation of thermodynamical concepts, situations far away
which length scales can its standard concepts meaningfullirom the thermodynamic limit should be analyzed. On the
be defined and employed? other hand, effective correlations between the considered
Besides its general importance, this question has becomgarts need to be small enou@ts,14.
increasingly relevant recently since amazing progress in the The scaling of interactions between parts of a system
synthesis and processing of materials with structures on n&ompared to the energy contained in the parts themselves
nometer length scales has created a demand for better undéplis sets a minimal length scale on which correlations are
standing of thermal properties of nanoscale devices, indistill small enough to permit the definition of local tempera-
vidual nanostructures, and nanostructured matefigdss.  tUres. It is the aim of this paper to study this connection
Experimental techniques have improved to such an exterfuantitatively.

that the measurement of thermodynamic quantities like tem- Slpmet attemg?lts to tgenerﬁllze tgermodyn%rilics ?IEJhCh that it
perature with a spatial resolution on the nanometer sca/@PP'Ies o small systems have been MAtig-—17. nese
seems within reack7—9]. approaches consider ensembles of independent, i.e., nonin-

To provide a basis for the interpretation of present dayc 2cind: small systems. By introducing an additional ther-

. ; . modynamical potential they take into account the surface
and future experiments in nanoscale physics and technologye s of the small systems. However, since the interactions
and to obtain a better understanding of the limits of thermoy o\een the small systems are neglecied these concepts can-
dynamics, it is thus indispensable to clarify the applicabilitynot capture the physics of the correlations,. This shortcoming
of thermodynamical concepts on small length scales startin%

fullv defined | h los? %he temperature.

u }I/'h efined on na?or:neterdengt .scla ess h Recently the impact of quantum correlations, i.e., en-

__The existence of thermodynamical quantities, 1.e., the eXgynglement on macroscopic properties of solids and phase

istence of the thermodynamic limit strongly depends on th&,hgjtions has drawn considerable attentia8—20. Since

cor\;ve_lerl]tlgns between. the %onsmlered pz?rts of a system. our analysis of criteria for local temperatures is based on a
Ith increasing size, the volume of a region in Spacestudy of correlations, our theoretical approach is a promising

grows faster than its surface. Thus effective interactions bey

. . ool to provide further insight into the role of correlations in
tween two regions, provided they are short ranged, becomgond state physics

We adopt here the convention that a local temperature
exists if the considered part of the system is in a canonical
*Electronic address: michael.hartmann@dir.de state, where the distribution is an exponentially decaying
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function of energy characterized by one single parametebor interactions. The Hamiltonian of our system is thus of
This implies that there is a one-to-one mapping between tenthe form[26]

perature and the expectation values of observables, by which

temperature is usually measured. Temperature measurements H=2 Hi+1jjs1, (1)
based on different observables will thus yield the same re- i

sult, contrary to distributions with several parameters. In ) ] )

large systems composed of very many subsystems, the deyyhere the index labels the elementary subsysterrsis the
sity of states is a strongly growing function of enefgy]. If Hamiltonian of subsystemandl; ;,; the interaction between
the distribution were not exponentially decaying, the producgubsysteni andi+1. We assume periodic boundary condi-
of the density of states times the distribution would not haveiions.

a pronounced peak and thus physical quantities like energy We now formNg groups ofn subsystems eacfindex i
would not have “sharp” values. —(u=2)n+j; u=1,...,Ng; j=1,...,n] and split this Hamil-

There have been attempts to describe systems which atenian into two parts,
not in an equilibrium state but in some sense close to it with
a generalized form of thermodynamics, that has additional H=Hy+1, 2
system parameters. Such a situation appears for example in ) o )
glasseg22]. Our approach analyzes whether thermodynamWhere Hy is the sum of the Hamiltonians of the isolated
ics in its standard form can apply locally. A study of whether3roups,

a generalized form of thermodynamics might apply even Ne
more locally should be a subject of future research. Ho= S (M, —1 )

A typical setup where the minimal length scale we calcu- 0~ - ¢ N1
late becomes relevant could be the measurement of a tem- .
perature profile with very high resolution, etc. One is thusyith
interested in scenarios where the entire sample is expected to

be in a stationary state. In most cases this state is close to a n
thermal equilibrium stat§23]. H,= > Higu-1+j + Tn(u-1)4j n(e-1+j+1 3
Based on the above arguments and noting that a quantum =1

description becomes imperative at nanoscopic scales, the fol- . . . I
lowing approach appears to be reasonable: Consider a Iar@é‘d' contains the interaction terms of each group with its
homogeneous quantum system, brought into a thermal stafgighbor group,
via interaction with its environment, divide this system into Ne
subgroups, and analyze for what subgroup size the concept 1=> 4)
of temperature is still applicable. ) pn,

Harmonic lattice models are a standard tool for the de- .
scription of thermal properties of solids. We therefore applywe label the eigenstates of the total Hamiltonidand their
our theory to a harmonic chain model to get estimates thagnergies with the Greek indicés, ) and eigenstates and

are expected to be relevant for real materials and might b@nergies of the group HamiltoniaH, with Latin indices
tested by experiments. éa b)

Recently, spin chains have been subject of extensive stu
ies in condensed matter physics and quantum information Hlg)=E, ) and Hola)=E,a). (5)
theory. Thus correlations and possible local temperatures in ¢
spin chains are of interest, both from a theoretical and exHere, the statef) are products of group eigenstates,
perimental point of view24,25. We study spin chains with

respect to our present purpose and compare their character- Ne
istics with the harmonic chain. lay=11 la,), (6)
This paper is organized as follows: In Sec. Il, we present p=1

the general theoretical approach which derives two condiynare (H,~ el =E a,). E, is the energy of one
tions on the effective group interactions and the global tem'FubgroupﬂonIgL/ ’ng IS
AT “u=1-p"

perature. In the following two sections we apply the genera
consideration to two concrete models and derive estimates ) )

for the minimal subgroup size. Section Il deals with a har- A. Thermal state in the product basis

monic chain, a model with an infinite energy spectrum. In . we assume that the total system is in a thermal state with
contrast, a spin chain has a bounded energy spectrum. Sage density matrix

tion IV therefore discusses an Ising spin chain in a transverse

field. In the conclusions section, Sec. V, we compare the . e PEe

results for the different models considered and indicate fur- {elply) = 7 Opu ()

ther interesting topics.

in the eigenbasis of. Here, Z is the partition sum ang@
=(kgT)* the inverse temperature with Boltzmann’s constant

We consider a homogeneouise., translation invariant kg and temperaturd. Transforming the density matrig7)
chain of elementary quantum subsystems with nearest neiginto the eigenbasis dfl; we obtain

Il. GENERAL THEORY
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R Ex g BE groupH, as defined in Eq(3) is bounded, i.e.,
@pla)= | wy(E)=~dE (8) g
(XHxy<C (15

Eo
for the diagonal elements in the new basis. Here, the sufy, all normalized stately) and some constar, and
over all statege) has been replaced by an integral over the

energy.E, is the energy of the ground state aidthe upper (a|H?|a) - (a|H|a)? = NgC’ (16)
limit of the spectrum. For systems with an energy spectrum ,
that does not have an upper bound, the lijt- should  Of SOome constant’>0.

be taken. The density of conditional probabilities(E) is In scenarios where the energy spectrum of each elemen-
given by tary subsystem has an upper limit, such as spins, condition

(15) is meta priori. For subsystems with an infinite energy
1 B spectrum, such as harmonic oscillators, we restrict our analy-
w(E) = AE. .. > CIl © sis to states where the energy of every group, including the
lerE<E,<E+AR) interactions with its neighbors, is bounded. Thus our consid-
whereAE is small and the sum runs over all states with erations do not apply to product state$, for which all the
eigenvaluesE, in the interval[E,E+AE). To compute the energy was located in only one group or only a small number
integral of Eq.(8) we need to know the distribution of the of groups. Sincég> 1, the number of such states is vanish-
conditional probabilitiesv,(E). ingly small compared to the number of all product states.
The statga) is not an eigenstate of the total Hamiltonian  If conditions(15) and(16) are met, Eq(8) can be com-
H. Thus ifH would be measured in the std#, eigenvalues puted forNg>1 [31]:
of H would be obtained with certain probabilities,(E) is
the density of thi ility distributi i il- A 1 BA; Eo—Ya+ BA;
y of this probability distribution. Since the Hamil (alplay = = exp| - By.+ a )l orf 222 a
tonianH is the sum of Hamiltonians of the groups, the situ- 2Z a 2 V24,

ation has some analogies to a sum of random variables. This 2
indicates that there might exist a central limit theorem for the - erfc<El_y++5Aa> , (17)
present quantum system, provided the number of groups be- V24,

comes very largg27]. Since the stat¢a) is not translation ] ) )
invariant and sinced also contains the group interactions, Wherey.=Ea+¢, and erf¢x) is the conjugate Gaussian error
the central limit theorem has to be of a Lyapurov Linde- ~ function,

berg type for mixing sequenceg28]. One can indeed show w0

that such a quantum central limit theorem exists for the erfc(x):i e ds. (18)
present mode[29,30 and thatw,(E) thus converges to a NV dx

Gaussian normal distribution in the limit of infinite number

of groupsNg, The second error function in Eql7) only appears if the

energy is bounded and the integration extends from the en-
B (E-Ea—£9)? ergy of the ground stat&, to the upper limit of the spectrum

2A3 Es. _ _
- _ Note thaty, is a sum ofNg terms and that\, fulfills Eq.
where the quantities, andA, are defined by (16). The arguments of the conjugate error functions thus
_ _ grow proportional toyNg or stronger. If these arguments
ea=(aH[a) -, (D divided by VNg are finite (different from zerg, the

lim wy(E) = —1 ex;{

Ng—® \/217'Aa

asymptotic expansion of the error functif3?] may thus be

A7 = (aH?a) - (alH[a)%. (12 ced forN> 1
g, is the difference between the energy expectation value of )
the distributionw,(E) and the energye,, while A2 is the exp(;x) for X —s o0
variance of the energly for the distributionw,(E). Note that VX
e, has a classical counterpart whilé is purely quantum erfox) ~ exp(—>2) (19
mechanical. It appears because the commutgigH,] is 2+W for x— —oo.

nonzero, and the distributiow,(E) therefore has nonzero

width. The two quant'itiesa andAZ can also be expressed in Inserting this approximation into Eq17) and usingE,
terms of the interaction onljsee Eq(2)], <y,<E; shows that the second conjugate error function,
e.=(all|a), (13) which contains the upper limit of the energy spectrum, can
always be neglected compared to the first, which contains the
2 _ /a12]a) _ 2 ground state energy.

Az =(@ll¥fa) - (allfa)”, (14 The same type of arguments show that the normalizations
meaning that, is the expectation value ankf the squared of the Gaussian in Eq10) is correct although the energy
width of the interactions in the stata). range does not extend over the entire real &xis, «).

The rigorous proof of Eq(10) is given in Ref.[29] and Applying the asymptotic expansiqid9), Eq. (17) can be
based on the following two assumptions: The energy of eackaken to read
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. 1 BA2
(a|p|a>= z eXp|:_:8<Ea+8a_ a):| (20)
z 2
for (Eg—Ea—&a+BA2)/(V2NgA,) <0 and
- BE,- (Ea+ €a~ EO)Z)
X 0 242
(alplay = o (22)
rgEoEazeat BA2
Aq
for (Eg—Ea—ga+BAY)/(V2NgA,) >0.

The off diagonal elementgalp|b) vanish for |E,—Ey|
>A,+A, because the overlap of the two distributions of
conditional probabilities becomes negligible. F&,—E,|
<A t+A,, the transformation involves an integral over fre-

PHYSICAL REVIEW E70, 066148(2004)
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FIG. 1. The product of the density of stategE) times the
occupation probabilitieée|p|¢) forms a strongly pronounced peak
atE=E.

quencies and thus these terms are significantly smaller than

the entries on the diagonal.

B. Conditions for local thermal states

We now test under what conditions the density mafrix

may be approximated by a product of canonical density ma-
where £,=(a|l ;n neif@) With e,=30c s

trices with
=1,2,...

temperature B, for each subgroup u
,Ng. Since the trace of a matrix is invariant under

basis transformations, it is sufficient to verify the correct
energy dependence of the product density matrix. If we as-
sume periodic boundary conditions, all reduced density ma-

trices are equal and their product is of the fofaip|a)

o« exp(—BiocEa). We thus have to verify whether the loga-
rithm of the right-hand side of Eq$20) and(21) is a linear
function of the energ¥,,

In(<a|;7|a>) =~ = BiocEat C,

where B, andc are constants.

Note that Eq.(22) does not imply that the occupation
probability of an eigenstatg) with energyE, and a product
state with the same ener@y,~ E,, are equal. Sincg,,. and

(22

B enter into the exponents of the respective canonical distri:

butions, the difference between both has significant cons
quences for the occupation probabilities; evem)if. and 8
are equal with very high accuracy, but not exactly the sam

occupation probabilities may differ by several orders of mag-

nitude, provided that the energy range is large enough.
We exclude negative temperaturg®>0). Equation(22)
can only be true for

E.+s.—E A2
a’fa” 0. g o 23)
VNGAa \‘JNGAa

as can be seen from EqR0) and(21). In this case{alp|a)
is given by Eq.(20) and to satisfy Eq(22), &, and A2 fur-
thermore have to be of the following form:

B

+ EAg = C]_Ea + Cz, (24)

wherec; andc, are constants. Note that and Ag need not

be functions ofE, and therefore in general cannot be ex-

panded in a Taylor series.

To ensure that the density matrix of each subgrpuis
approximately canonical, one needs to satisfy &4) for
each subgroup. separately;

B

g,.1te A
Sttt B e BR o e, 09

2
2 _ 2
w AL=(@H|a)

Az Elﬁ-l <a|HV—lHV+HVH V—l|a>

_< |H |a>2 and v=p—1

~2(alH, J|axal?,/a).
Temperature becomes intensive,
vanishes,

if the constant

|Cl| <10 Bloc: ,8 (26)

If this was not the case, temperature would not be intensive,
although it might exist locally.

It is sufficient to satisfy condition§23) and (25) for an
adequate energy rand®,,<E,<Enp,only. For large sys-
tems with a modular structure, i.e., a system composed of a
large number of subsystems, the density of states is typically
a rapidly growing function of energy21,33. If the total

system is in a thermal state, occupation probabilities decay
exponentially with energy. The product of these two func-

&ions is thus sharply peaked at the expectation value of the

energyE of the total systenE+E,=Tr(Hp), with E, being
e ground state energgee Fig. 1
The energy range thus needs to be centered around this
peak and large enough. On the other hand it must not be
larger than the range of valu&s, can take on. Therefore a
pertinent and “safe” choice fdE,;, and E ., is
1 E E
mlﬂ_ ma){[E ]mlﬂl N N_Z)!
E E0>
Ne Ng

wherea>1 andE will in general depend on the global tem-
perature. In Eq27), [E, ]min and[E,, Jmaxdenote the minimal
and maximal valueg, can take on.

Figure 2 shows the logarithm of E@l7) and the loga-
rithm of a canonical distribution with the sangefor a har-
monic chain as an example. The actual density matrix is

G

Emax= min([Eﬂ]maxa (27)
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In ({a|p|a)) No
AZ=2 A2, (32)
:\ pu=1

\ whereA ,, the width of one group interaction, reads
2 \? kag 1
\ () [2 oo 3ol )

> L
Eiow Ehigh ’ [% COSZ(%)‘%( m, + 5)} . (32
E

Ai has a minimum value since ai=0 and allm,=0. In
Eqg. (32), k labels the modes of group with occupation
numbersn, and p the modes of groupc+1 with occupation

) ) _ numbersm,. The width AZ thus fulfills condition(16).
more mixed than the canonical one. In the interval between gjnce the spectrum of every single oscillator is infinite,

the two vertical lines, both criteri@3) and(25) are satisfied.  condition(15) can only be satisfied for states, for which the

For E<Ey Eq. (23) is violated and Eq(25) for E>Epign.  energy of the system is distributed among a substantial frac-

To allow for a description by means of canonical densitytion of the groups, as discussed in Sec. IL.

matrices, the group size needs to be chosen suchBhat We now turn to analyze the two criteria3) and(25). The

< Enmin @nd Epigh> Emay _ expectation values of the group interactions vanisfO0,
For a model obeying Eqg15) and(16), the two condi- \yhile the widthsA? depend on the occupation numbexs

tions (23) and(25), which constitute the general result of this and therefore on the energi&s. We thus have to consider

paper, must both be satisfied. These fundamental criteria Wiljoth conditions, Egs(23) and (25). To analyze these, we

now be applied to some concrete examples. make use of the continuum or Debye approximatjed],

requiringn>1, ag<I, wherel=na,, and the length of the

chain to be finite. In this case we hawg=vk with the con-

stant velocity of soundv=wyay, and cogkay/2)=1. The
As a representative for the class of systems with an infiwidth of the group interaction thus translates into

nite energy spectrum, we consider a harmonic chaiN®h 4

particles of massn and spring constantme,. In this case, Ai: —E,E 1, (33

the Hamiltonian reads n

FIG. 2. In{a|p|a)) for p as in Eq.(17) (solid line) and a canoni-
cal density matrixp (dashed lingfor a harmonic chain.

IIl. HARMONIC CHAIN

wheren+1=n has been used. The relevant energy scale is

Hi= mpi2+ ”—"wgqf, (28)  introduced by the thermal expectation value of the entire
2 2 chain
2 rOIT
lijie1= = MwG0iC1, (29 E=N nkB®<—> X dx (34)
G @ 0 eX - 1 ’

wherep; is the momentum of the particle at siteandq; the

displacement from |tS equi”brium pOS|t|0na0 W|th a.o being and the ground state energy is given by
the distance between neighboring particles at equilibrium.

We divide the chain intdNg groups ofn particles each and TV (9T x Nghks®
o - Eo=Ngnks®| — —dx=—"——. (35)
thus get a partition of the type considered above. o)), 2 4
The Hamiltonian of one group is diagonalized by a Fou-
rier transform and the definition of creation and annihilationWe first consider the criterio(23).
operatoraﬁ anday for the Fourier modegsee Appendix A For a givenE,=X E,, the squared widtmi is largest if
Ng 1 all _EM are equal,E,=E D,u._Thus Eq.(23) is hardest to
E.=2 X wk(”ﬁ(u) + —) (30)  satisfy for that case, where it reduces to
- 2)’
u=1 k
~ E, 48~
E-Bo 4By (36)

where k=ml/[ag(n+1)] (1=1,2,...,n) and the frequencies
wy are given byw?=4w3 sirf(ka/2). nd(u) is the occupation ,
number of modé of groupu in the statda). We chose units Equatmin (36) sets a lower bound on. For temperatu~res
where=1. where E<E,, this bound is strongest for low energi€s
We first verify that the harmonic chain model fulfills the while at E>E, it is strongest for high energieé. Since
conditions for the applicability of the quantum central limit condition(25) is a stronger criterion than conditiq@3) for
theorem(10). To see that it satisfies the conditioh6) one  E>E,, we only consider Eq(36) at temperatures wherge
needs to express the group interactign,,n.1 in terms ofal <E,. In this range, Eq(36) is hardest to satisfy for low

anday, which yieldsZM:O for all u and therefore energies, i.e., @=(E/aNg) +(Eo/Ng), where it reduces to

Ng n?
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Nmin range, i, «, in other words, the larger one chooses the
108 energy range where Eq&3) and (25) should be fulfilled,
, the larger has to be the number of particles per group. Fur-
108 ; thermore, for high temperatures,,i,= 5%, which simply
states that one needs more particles per group to obtain a
104 canonical state with better accuracy.
Since the resulting minimal group sizes,, are larger
102 than 16 for all temperatures, the application of the Debye
approximation is well justified.
b T/©

107310721071 10T 107 10°
IV. ISING SPIN CHAIN IN A TRANSVERSE FIELD
FIG. 3. Log-log-plot ofn,i, from Eq.(37) (dashed lingandny,,
from Eq. (40) (solid line) for =10 and5=0.01 as a function of
T/© for a harmonic chaind and « are defined in Eqs(40) and

In this section we consider an Ising spin chain in a trans-
verse field. For this model the Hamiltonian reads

(27), respectively. Local temperature exists in the shaded area. H = - Bo?Z
I 1
> 9&(@ + 1)2 (37) JX Jy
T 4e\ « ' |i,i+1=_50'€(® U'f(+1_§o'iy® O'iy+11 (43

with 8=E/(nNgkg®).
To test condition25) we take the derivative with respect

to E,, on both sides,
always assum&>0.
B Eo\ 2BE, The entire chain with periodic boundary conditions may
2 Bu-1¥Buvi = 2N_G FN_G =G (38 pe diagonalized via successive Jordan-Wigner, Fourier, and
Bogoliubov transformationgsee Appendix B The relevant
where we have separated the energy dependent and the c@ihergy scale is introduced via the thermal expectation value
stant part in the left-hand side E(38) is satisfied if the  (without the ground state energy

energy dependent part is much smaller than 1,

whered}, of, ando{ are the Pauli matrice® is the magnetic
field and J, and J, are two coupling parameters. We will

— nNG & Wy
E E=—— dk————, 44
%(E#_1+ Eu1- 2N—O> < 5<1. (39) 27 J_,.  expBw)+1 (44)
G

This condition is hardest to satisfy for high energies. Takin Wwherew is given in Eq.(B9). The ground state energ is

E,-1 andE,,; equal to the upper bound in E@7), it yields given by
200 _ nNwa Wy
ket Eop=—— dk—. 45
n>—_8, (40) =" o )95 (45
where the “accuracy” parametér< 1 quantifies the value of SinceNg> 1, the sums over all modes have been replaced by
the energy dependent part in E§8). integrals.
Since the constant part in the left-hand side (8B) If one partitions the chain intblg groups ofn subsystems
satisfies each, the groups may also be diagonalized via a Jordan-
~ — Wigner and a Fourier transformatigeee Appendix B Us-
Z_EE < ﬁ(i_ - \_5> <1, (41) ing the abbreviations
nN“Ng a\\V2 «a
ity J—Jy
temperature is intensive. K= B and L= B (46)
Inserting Eq.(34) into Egs.(37) and (40) one can now
calculate the minimah for given 5 a, © and T Figure 3 {1e energyE, reads
showsn,,;, for =10 andé=0.01 given by criteriori37) and
(40) as a function ofT/®. Hence local temperature exists, Ng 1
i.e., local states are canonical for all group sizes larger than E.= 2B, > [1-K cos(k)](nf(‘(,u) - 5) (47
the maximum of the twan,,;;, curves plotted in Fig. 3. u=1 k

For high(low) temperatures,,, can thus be estimated by wherek=m/(n+1) (I=1,2,...,n) and ni(w) is the Fermi-

{za/g for T> 42 onic occupation number of modeof group x in the state

Nmin =~ 3 . 42 |a). It can take on the values 0 and 1.

(3a/2m)(OIT)° for T<O. For the Ising model at hand one has, as for the harmonic
Equation(42) also shows the dependence of the results orchain,e,=0 for all stateqa), while the squared varianczliifi

the “accuracy parameters’andé. In the whole temperature reads
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Ng Nmin
A2= A2, (48)
2 p=1 108
with 10°
2 2 104
A2 = BZ<K— + L—) - 2B%(K?- L)
2 2 102
X iz sinz(k)<na(,u) - 5) T/B
n+1<5 K 2 1078 10°® 107% 1072 102

2 . a 1 FIG. 4. Log-log plot ofny,;, from Eq.(51) for K=L=0.1(dashed
X l n+ 1% Sm2(p)<np('“+ - 5)}’ (49) line) and forK=L=10 (solid line) as a function ofT/B. a=10 is

defined in Eq(27).

where then}(x) are the same Fermionic occupation numbers A7] [A7]
as in Eq.(47). plmax” LAy dmin _ _ .

The conditions for the central limit theorem are met for B 2 < [Eulmax=[EyJmin (52
the Ising chain apart from two exceptions: Condit{d) is i .
always fulfilled as the Hamiltonian of a single spin has finite WN€r€ [Xmax and [X]min denote the maximal and minimal
dimension. As follows from Eq49), condition(16) is satis-  valuex takes on in all statefa). As a direct consequence,
fied except for one single state in the case whired, (L~ W€ g€t
=0) andJ,=-J, (K=0), respectively. These two states have oy <1 (53)
Ai:O and thusAZ<NgC'. The state forL=0 is the one ) o . o
where all occupation numberg(u) vanish and the state for Which means that temperature is intensive. Defining the
K=0 is the state with alternating occupation numbersduantity e,=E,/n, we can rewrite Eq(52) as a condition
nd(w)=0, nd(u+1)=1, n&(u+2)=0,... (for all k each. As ©°NN

there is, for given parameters, at most one state that does not B [A2] . ~[A2].;
fulfill Eq. (16), the fraction of states where our theory does n= L —4m& mn (54)
not apply is negligible foNg>1. 26 [€yJmax— [€u]min

We now turn to analyze condition@3) and (25). Since  where the accuracy parameté& 1 is equal to the ratio of
the spectrum of the Ising chain is limited, there is no ap-he left-hand side and the right-hand side of E&p).
proximation analog to the Debye approximation for the har-  since Eq(52) does not take into account the energy range
monic chain and\’, cannot be expressed in terms®f;  (27), its application needs some further discussion.
and E,. We therefore approximate Eg&3) and (25) with If the occupation number of one mode of a group is
simpler expressions. The results are thus quantitatively not &hanged, say from2(u)=0 to ni(x)=1, the corresponding
precise as for the harmonic chain, but nevertheless yield rex? gitfer at most by 82[K2-L2/(n+1). On the other hand,
liable order of magnitute estimates. [A2] e [A2]min=B2K2— L. The state with the maximal

Let us first analyze conditioi23). Since it cann_qt be ané the st::te with the minimal? thus differ in nearly gll
checked for every state) we use the stronger condition . hation numbers and therefore their difference in energy

. is close to[E,, Jmax~[E,]min- ON the other2 hand, states \2/vith

] 2 similar energiesE,, also have a similan?. Hence theA
Eu s > BLALImax (50 only change quasﬂicontinuously with ene}ng and &@) en-
sures that thai are approximately constant even on only a

instead, which implies that E¢23) holds for all statega). ~ Part of the possible energy range. _ _
We require Eq(50) to be true for all states with energies in ~ We are now going to discuss three special coupling
the range(27). It is hardest to satisfy foE,=Eq, we thus models.
get the condition om:

A. Coupling with constant width A, J,=0

2
n> BM, (51) If one of the couplings vanishg3,=0 orJ,=0), K=L and
€min~ € A2=B2K? is constant. In this case only criterig@3) has to
be satisfied, which then coincides with §§1).
whereenin=Emin/n andeg=Egy/ (NNg). Plugging expression&4), (45), and(49) and with J,=J

We now turn to analyze conditio25). Equation(49) and J,=0 into condition(51), one can now calculate the
shows that theA? do not contain terms which are propor- minimal number of systems per group.
tional to E,. One thus has to determine when th§ are Figure 4 showsn,, for weak couplingKk=L=0.1 and
approximately constant which is the case if strong couplingK=L=10 with =10 as a function of/B.

066148-7



HARTMANN, MAHLER, AND HESS

W~

1ol4

10—0.5

FIG. 5. Log-log plot ofn,, as a function off /B from Eq. (51)
for two values of the accuracy parametera=1 anda=100, left
plot for K=L=0.1 and right plot forK=L=10. « is defined in

Eq. (27).

We choose units where Boltzmann’s constianis 1.
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each coupling strength, the stronger condition, that is the
higher curve in Fig. 6, sets the relevant lower bound to the
group sizen.

In the present case, all occupation numbgfg) are zero
in the ground state of a group. In this st is maximal
(Ai:BZLZ) as can be seen from E@9). Therefore criterion
(51) is equivalent to criterion(23) for low temperatures,
where Epi,=[E,]min. For high temperatures, wherg,
=E/(aNg), condition(51) is slightly stronger than Eq23).
For the present model, this is only the case for0.1
(dashed linpand T=0.458.

In Fig. 6, the results obtained from Ep4) are propor-
tional to 5 (dash-dotted line and gray linewhile those

For any set of parameters, there is a finite temperaturebtained from Eq(51) (dashed line and solid lindave the

above whichn,;,=1.

Note that, sinced ,=const, condition51) coincides with
criterion (23) (A,=const4A ,Jna), SO that using Eq(51)
does not involve any approximations.

As condition(24) is automatically satisfied for the present

same dependency amas shown in Fig. 5.

C. Isotropic coupling: Jy=Jy

As a third example, we consider the isotropic coupling,

model, the results do not depend on the “accuracy paramwhere J,=J,, i.e., L=0. Again, both criteria’51) and (54)

eter” 6. The dependence of the results @ns shown in Fig.
5. a plays a role only wher&,,;,;=E/(aNg)+Ey/Ng [cf. Eq.

have to be met.
The values offA%]mae [AZ]min [€.]max and[e, ]y are

(27)]. Then for smallew, n,, eventually decays steeper and given in Egs.(B11)—«B13).

thus reaches,,=1 already at lower temperatures. There is

thus a temperature interval, whamg;, is larger for largera

and vice versa. This dependency has the same interpretati

as for the harmonic chain.

B. Fully anisotropic coupling: J,=-J,

If both couplings are nonzero, the varianczle§ are not

constant. As an example, we consider here the fully anis

tropic coupling, wherel,=-J,, i.e., K=0. Now criteria(51)
and(54) have to be met.

For K=0, one hagA?],,,=B22 [A2],=0 and[e,]max
=-[e,]min=B. Plugging these results into EG4) as well as
Egs. (44) and (45) into Eg. (51), the minimal number of
systems per group can be calculated.

Figure 6 shows,,;, from criterion(51) and from criterion

0_

For the present model with=0 and|K|<1 all occupa-
tion numbersni(x) are zero in the ground state and thus

@i:o. As a consequence, conditighil) cannot be used in-

stead of EQ.(23). We therefore argue as follows: In the
ground statée,,—Ey/Ng=0 as well asAi:O and all occupa-
tion numbersng(u) are zero. If one occupation number is
then changed from 0 to 1A2 changes at most by
4B%K?/(n+1) andE, changes at least byB21-|K|). There-
fore, Eqg.(23) will hold for all states except the ground state
if

2

1=K}

n> 283 (55)

If |K|>1, occupation numbers of modes with @9s
<1/|K| are zero in the ground state and occupation numbers

(54) separately, for weak coupling=0.1 and strong cou- of modes with co&) > 1/|K| are 1.Ai for the ground state

pling L=10 with =10 ands=0.01 as a function of /B. For
Nmin

108

106

10t

10

S . T/B
107% 107* 107° 102 104 /

FIG. 6. Log-log plot ofn,,, for L=0.1 from Eq.(51) (dashed
line) and from Eqs(54) (dash-dotted linpandny, for L=10 from
Eq. (51) (solid line) and from Eq.(54) (gray line as a function of
T/B. K=0, =10, andé=0.01.« and § are defined in Eq27) and

(54), respectively.

then is[A%]g=[A%]na 2 and Eq(51) is a good approxima-
tion of condition(23).

Plugging these results into E¢G4) as well as Eq(44)
and Eq.(45) into Eq.(51) for |[K|>1 and using Eq(55) for
|K|<1, the minimal number of systems per group can be
calculated.

Figure 7 shows,,, from criteria (55) and (54) and for
weak couplingK=0.1 and from criterig51) and(54) and for
strong couplingK=10 with «=10 and$=0.01 as a function
of T/B. For each coupling strengif, the stronger condition,
that is the higher curve in Fig. 7, sets the relevant lower
bound to the group size.

Equation(55) does not take into account the relevant en-
ergy rangg27); it is therefore possible that a weaker condi-
tion could be sufficient in that case. However, since ©4)
is a stronger condition than E¢p5) for K=0.1, this possi-
bility has no relevance.

For strong couplingK=10, Eq.(51) is used to approxi-
mate Eq.(23). This approximation is expected to be good
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Nmin models, the condition$23) and (25) determine a minimal
1012 group size and thus a minimal length scale on which tem-
10 perature may be defined according to the temperature con-
10 cept we adopt. Grains of size below this length scale are no
108 more in a thermal state. Thus temperature measurements
10 with a higher resolution should no longer be interpreted in a
standard way.
104 We have given order of magnitude estimates for the mini-
. 2 mal group sizgminimal length scalefor the models men-
<~ tioned above. The most striking difference between the spin
=) = T 2 4 T/B chains and the harmonic chain is that the ener t f
10 10 10 10 10 gy spectrum o
the spin chains is limited, while it is infinite for the harmonic
FIG. 7. Log-log-plot ofny, for K=0.1 from Eq.(55) (dashed chain.
line), and from Eq(54) (dash-dotted lineandn,, for K=10 from For spins at very high global temperatures, the total den-

Eqg. (51) (solid line) and from Eq.(54) (gray ling) as a function of  sity matrix is then almost completely mixed, i.e., propor-
T/B.L=0,a=10, and5=0.01.a andé are defined in Eqg27) and  tjonal to the identity matrix, and thus does not change under
(54), respectively. basis transformations. There are thus global temperatures
which are high enough, so that local temperatures exist even
because), is close to its maximal value for low energy for single spins.
states. Furthermore, the temperature dependence we obtainFor the harmonic chain, this feature does not appear, since
here for ny,, for low temperatures is the same as for thethe size of the relevant energy range increases indefinitely
harmonic chainn,,> T~3. This agreement is to be expected: with growing global temperature, leading to the constant
The two couplings, when expressed in creation and annihiminimal length scale in the high energy range.
lation operators, have the same structure and the upper limit For the spin chain with isotropic coupling,=J,, and the
of the spectrum of the spin chain becomes irrelevant at lovharmonic chain, the temperature dependenciesgf for
temperatures. low temperatures coinciden,,=T 3, because both cou-
For the present model, the dependence of the results gulings have the same structure and the upper limit of the
the “accuracy parameterst and & is as follows. Results spectrum of the spin chain becomes irrelevant at low tem-
obtained from Eq(54) are proportional to5* (dash-dotted peratures. The spin chain with=0 or J,=0 shows the in-
line and gray ling while the result obtained from E@51)  teresting feature thaAg is constant and conditio25) is
(solid line) has the same dependency @ras shown in Fig. automatically fulfilled.
5. For weak coupling and low temperatur@tashed ling The set of models we have discussed is by no means
Nmin does not depend on the two “accuracy parameters.” exhaustive. It would be particularly interesting to see
whether there are systems for which local temperatures can
V. SUMMARY AND CONCLUSIONS exist although they are not intensive. This can happen if

We have considered a linear chain of particles interactingither e, or A2 were proportional toE,. A2, however, has
with their nearest neighbors. We have partitioned the chaiflimension energy squared, so that it cannot be proportional
into identical groups of adjoining particles each. Taking the 0 E, un_Iess there exists another characteristic energy of the
number of such groups to be very large and assuming thgystem independent &,. So far, we have not found models
total system to be in a thermal state with temperafurge ~ Wheree,<E,. _ .
have found conditiongEqs. (23) and (25)], which ensure For the models we conS|de( here, the off d|agoAnaI ele-
that each group is approximately in a thermal state. Furthefments of the density operator in the product baéis|b)
more, we have determined when the isolated groups have tH@#b), are significantly smaller than the diagonal ones,
same temperatur®, that is, when temperature is intensive. (a/p|a). Our general result, condition®3) and (25), thus

The result shows that, in the quantum regime, these corstates that the density matrix “approximately” factorizes
ditions depend on the temperatudrecontrary to the classical with respect to the considered partition. This implies that the
case. The characteristics of the temperature dependence atatep is not entangled with respect to this partition, at least
determined by the widtl\, of the distribution of the total within the chosen accuracy. It would therefore be interesting
energy eigenvalues in a product state and its dependence tmsee how our result relates to the scaling of entanglement in
the group energieB,. The low temperature behavior, in par- many particle systemi8].
ticular, is related to the fact that, has a nonzero minimal Unfortunately, our approach only applies to nonzero tem-
value. This fact does not only appear in the harmonic chaimperatures. The underlying central limit theord20,3Q is
or spin chains but is a general feature of quantum systemsbout the weak convergence of the distribution of energy
composed of interacting particles or subsystems. The coneigenvalues. Weak convergence means that only integrals
mutator[H,H,] is nonzero and the ground state of the totalover energy intervals of nonzero length do converge. We thus
system is energetically lower than the lowest product statezannot make statements about a system in its ground state,
thereforeA, is nonzero, even at zero temperat[28,35-37. let alone about the entanglement in that state.

We have then applied the general method to a harmonic Since harmonic lattice models in Debye approximation
chain and several types of Ising spin chains. For concrethave proven to be successful in modeling thermal properties
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of insulators(e.g., heat capacipyf34], our calculation for the For the entire chain with periodic boundary conditions,

harmonic chain provides a first estimate of the minimalthe Fourier transformation reads

length scale on which intensive temperatures exist in insulat- o

ing solids, q; } _ 1 {Uk expliagkj) (AD)
Imin = inirB0- (56) PiJ NG« Lok exp- fagkd)

Let us give some numerical estimates: Choosing the “accuwith  k=27l/(aonNg) and (1=0,1,...+(nNg-2)/2,
racy parameters” to be=10 ands=0.01, we get for hotiron (NNg)/2, wherenNg has been assumed to be even.

(T>0=470 K, ag=~2.5 A) I,i,=50 um, while for carbon For the diagonalization of one single group, the Fourier
(0~=2230 K, ay~1.5 A) at room temperatur€70 K) I,  transformation is
~10 um. The coarse graining will experimentally be most
relevant at very low temperatures, whegg, may even be- q;
come macroscopic. A pertinent example is silico® pj} n+ 1% { } X sin(agk]) (A2)
~645 K, ag=~2.4 A), which hasl,,=~10cm atT=1K
(again witha=10 andé=0.01). with k=71/(ayp(n+1)) and(I1=1,2,...,n).

Of course the validity of the harmonic lattice model will  The definition of the creation and annihilation operators is
eventually break down at finite, high temperatures and ouin both cases
estimates will thus no longer apply there.

Measurable consequences of the local breakdown of the ay _ 1 - .
concept of temperature and their implications for future N Mol | 10k | (A3)
nanotechnology are interesting questions which arise in the
context of the present discussion. where the corresponding, andv, have to be inserted. The

In the scenarios of global equilibrium, which we considerfrequenciesw, are given by wi=4ws sir’(kay/2) in both
here, a temperature measurement with a microscopic theggses.
mometer, locally in thermal contact with the large chain, The operatorsik and a, satisfy Bosonic commutation re-
would not reveal the nonexistence of local temperature. Ongtions
can model such a measurement with a small system, repre-
senting the thermometer, coupled to a heat bath, representing [ay,a,] =0,
the chain. It is a known result of such system bath models

[39], that the system always relaxes to a thermal state with [a, all= 5 (A4)
the global temperature of the bath, no matter how local the P kP
coupling might be. and the diagonalized Hamiltonian reads
This, however, does not mean that the existence or non-
existence of local temperatures had no physical relevance: 1
There are indeed physical properties, which are determined H=2 “’k<alak+ _)' (AS)
by the local states rather than the global ones. Whether these
properties are of thermal character depends on the existence
of local temperatures. A detailed discussion of such proper- APPENDIX B: DIAGONALIZATION
ties will be given elsewhere. OF THE ISING CHAIN

The length scales, calculated in this paper, should also
constrain the way one can meaningfully define temperature The Hamiltonian of the Ising chain is diagonalized via
profiles in nonequilibrium scenaridd0]. Here, temperature Jordan-Wigner transformation which maps it to a Fermionic
measurements with a microscopic thermometer, which is losystem[41,42,
cally in thermal contact with the sample, might indeed be
suitable to measure the local temperature. An explicit study ¢ =(I] o ol +ial
of this possibility should be subject of future research. '_( i) '
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‘The operators; and ciT fulfill Fermionic anticommutation

relations
APPENDIX A: DIAGONALIZATION {C- C-} -0
OF THE HARMONIC CHAIN v ’
The Hamiltonian of a harmonic chain is diagonalized by a {c,,cht = P (B2)
Fourier transformation and the definition of creation and an- €i
nihilation operators. and the Hamiltonian reads
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H=B|> (ZCJ-ch _ 1) -KS (CjTCj+1+ H.c.) In the case of the finite chain of one group, the Bogoliu-
j j

bov transformation is not needed since the corresponding
terms are of the fornd/d] andd,d, and vanish by virtue of
-L> (¢fcf, +Hee) (B3)  Eq.(B2).
i The Hamiltonians in the diagonal form read
with K=(J,+J,)/(2B) and L=(J,—J,)/(2B). In the case of S + 1
periodic boundary conditions a boundary term is neglected in H= - x| b= 2) (B8)
Eq. (B3). For long chaingnNg— «) this term is suppressed
by a factor(nNg)™*. The Hamiltonian now describes Fermi- where the frequencies are
ons which interact with their nearest neighbors. As for the I 2 2
Bosonic system, a Fourier transformation maps the system to @ = 2B\[1 K cosk]"+[L sink] (B9)
noninteracting fermions. For the whole chain with periodicwith k=(2#l1)/(nNg) for the periodic chain and
boundary conditions

w, = 2B(1 - K cosk) (B10)
t +
G } - 1 S ki x {dk (B4)  With k:(q-rl)./(.n+1) fgr the finite chgin.
Cj YNNGk dy For the finite chain the occupation number operators may

also be chosen such thaj, is always positive. Here, the
convention at hand is more convenient, since the same occu-
pation numbers also appear in the group interaction and thus

with  k=(271)/(nNg) where 1=0,%1,...,£(nNg-2)/2,
(NNg)/2 for nNg even, and

t + inA,.
C 2 d s
| _ . . k
G } " N+ 1% sintkj) {dk (B9 Maxima and minima of E,, and A2
with k=(=1)/(n+1) and(I=1,2,...,n) for one single group. The maximal and minimal values &, are given by
In the case of periodic boundary conditions, fermion in- [Eudmax| )+
teractions of the fornd/d', andd,d_, remain. Therefore one T - nB, (B11)
. k¥ =k . . . [EM]mln
still has to apply a Bogoliubov transformation to diagonalize
the system, i.e., for [K|<1 and by
. E +
o = Ueby — iviboi, [ ”‘]max} = { }nt[\r’Kz— 1+ arcsir(i)} ,
[E,L]min - ™ |K|
d = udy + vyl (B6) (B12)

whereu,=u_y, v,=-v_, anduz+vZ=1. With the definitons ~ for [K|>1, where the sum over all modéshas been ap-
u,=cog®,/2) anduv,=sin(@®,/2) the interaction terms disap- Proximated with an integral.

pear for The maximal and minimal values dﬁ are given by
1-K cosk [ALdmax | _ o ] max(i?L?)
cog0y) = - — (B7) a2y | ° B* X min(K2,L2) (B13)
V[1-K cosk]?+[L sink]? (AL Jmin =
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